3.3.50 \(\int \csc ^2(e+f x) \sqrt {a+b \sec (e+f x)} \, dx\) [250]

Optimal. Leaf size=121 \[ \frac {\sqrt {a+b} \cot (e+f x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (e+f x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (e+f x))}{a+b}} \sqrt {-\frac {b (1+\sec (e+f x))}{a-b}}}{f}-\frac {\cot (e+f x) \sqrt {a+b \sec (e+f x)}}{f} \]

[Out]

cot(f*x+e)*EllipticF((a+b*sec(f*x+e))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(f*x+e))/(a+
b))^(1/2)*(-b*(1+sec(f*x+e))/(a-b))^(1/2)/f-cot(f*x+e)*(a+b*sec(f*x+e))^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {3960, 3917} \begin {gather*} \frac {\sqrt {a+b} \cot (e+f x) \sqrt {\frac {b (1-\sec (e+f x))}{a+b}} \sqrt {-\frac {b (\sec (e+f x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (e+f x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{f}-\frac {\cot (e+f x) \sqrt {a+b \sec (e+f x)}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]],x]

[Out]

(Sqrt[a + b]*Cot[e + f*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[e + f*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1
- Sec[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[e + f*x]))/(a - b))])/f - (Cot[e + f*x]*Sqrt[a + b*Sec[e + f*x]])
/f

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3960

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)/cos[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[Tan[e + f*x]*((a
+ b*Csc[e + f*x])^m/f), x] + Dist[b*m, Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e
, f, m}, x]

Rubi steps

\begin {align*} \int \csc ^2(e+f x) \sqrt {a+b \sec (e+f x)} \, dx &=-\frac {\cot (e+f x) \sqrt {a+b \sec (e+f x)}}{f}+\frac {1}{2} b \int \frac {\sec (e+f x)}{\sqrt {a+b \sec (e+f x)}} \, dx\\ &=\frac {\sqrt {a+b} \cot (e+f x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (e+f x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (e+f x))}{a+b}} \sqrt {-\frac {b (1+\sec (e+f x))}{a-b}}}{f}-\frac {\cot (e+f x) \sqrt {a+b \sec (e+f x)}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.90, size = 120, normalized size = 0.99 \begin {gather*} \frac {-\left ((b+a \cos (e+f x)) \csc (e+f x) \sqrt {\frac {1}{1+\sec (e+f x)}}\right )+b F\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (e+f x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {\frac {a+b \sec (e+f x)}{(a+b) (1+\sec (e+f x))}}}{f \sqrt {\frac {1}{1+\sec (e+f x)}} \sqrt {a+b \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]],x]

[Out]

(-((b + a*Cos[e + f*x])*Csc[e + f*x]*Sqrt[(1 + Sec[e + f*x])^(-1)]) + b*EllipticF[ArcSin[Tan[(e + f*x)/2]], (a
 - b)/(a + b)]*Sqrt[(a + b*Sec[e + f*x])/((a + b)*(1 + Sec[e + f*x]))])/(f*Sqrt[(1 + Sec[e + f*x])^(-1)]*Sqrt[
a + b*Sec[e + f*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(263\) vs. \(2(110)=220\).
time = 0.23, size = 264, normalized size = 2.18

method result size
default \(-\frac {\left (-1+\cos \left (f x +e \right )\right )^{2} \left (\cos \left (f x +e \right ) \EllipticF \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, \sqrt {\frac {a -b}{a +b}}\right ) \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {a \cos \left (f x +e \right )+b}{\left (\cos \left (f x +e \right )+1\right ) \left (a +b \right )}}\, \sin \left (f x +e \right ) b +\sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {a \cos \left (f x +e \right )+b}{\left (\cos \left (f x +e \right )+1\right ) \left (a +b \right )}}\, \EllipticF \left (\frac {-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}, \sqrt {\frac {a -b}{a +b}}\right ) b \sin \left (f x +e \right )+\left (\cos ^{2}\left (f x +e \right )\right ) a +\cos \left (f x +e \right ) b \right ) \left (\cos \left (f x +e \right )+1\right )^{2} \sqrt {\frac {a \cos \left (f x +e \right )+b}{\cos \left (f x +e \right )}}}{f \left (a \cos \left (f x +e \right )+b \right ) \sin \left (f x +e \right )^{5}}\) \(264\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2*(a+b*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(-1+cos(f*x+e))^2*(cos(f*x+e)*EllipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))*(cos(f*x+e)/(cos(
f*x+e)+1))^(1/2)*((a*cos(f*x+e)+b)/(cos(f*x+e)+1)/(a+b))^(1/2)*sin(f*x+e)*b+(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*
((a*cos(f*x+e)+b)/(cos(f*x+e)+1)/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))/sin(f*x+e),((a-b)/(a+b))^(1/2))*b*sin(
f*x+e)+cos(f*x+e)^2*a+cos(f*x+e)*b)*(cos(f*x+e)+1)^2*((a*cos(f*x+e)+b)/cos(f*x+e))^(1/2)/(a*cos(f*x+e)+b)/sin(
f*x+e)^5

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e) + a)*csc(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e) + a)*csc(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \sec {\left (e + f x \right )}} \csc ^{2}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2*(a+b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x))*csc(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e) + a)*csc(f*x + e)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+\frac {b}{\cos \left (e+f\,x\right )}}}{{\sin \left (e+f\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(e + f*x))^(1/2)/sin(e + f*x)^2,x)

[Out]

int((a + b/cos(e + f*x))^(1/2)/sin(e + f*x)^2, x)

________________________________________________________________________________________